then we apply energy method to get a priori estimate which yields the the global existence and asymptotic result with the help of the local existence result 然后利用能量方法做一個(gè)有用的先驗(yàn)估計(jì),由此估計(jì)和局部存在性結(jié)果即可得到光滑解的整體存在性和漸近性結(jié)果。
the variable bandwidth local linear regression method we used in this paper have the advantages of both the local linear regression method and the variable bandwidth idea . the variable bandwidth henced the flexibility of the estimation . and it make this method can fit the spacial complex curve very well . and the asymptotic results of the estimation found the theoretic base for find the best variable bandwidth and drive the pratical best variable bandwidth from data directly 本文所用的變窗寬局部線性回歸方法,繼承了局部線性回歸的優(yōu)點(diǎn),并且使用變窗寬提高了所得估計(jì)的可塑性。并使之能成功地處理空間非齊次曲線等復(fù)雜形狀的曲線擬合問題。所得估計(jì)的漸近結(jié)果為求漸近最優(yōu)窗寬方案以及直接從數(shù)據(jù)估計(jì)最優(yōu)變窗寬提供了理論基礎(chǔ)。
this paper provides the functional equation of general rooted maps with the number of inner faces, the rooted face valency and the number of non-rooted vertices as parameters on the torus, and gives an explicit expression of the enumerating function of these maps with the number of inner faces and of non-rooted vertices, then the number of these maps with the size as a parameter whose asymptotic result had been obtained in [ 2 ] is obtained as a corollary 這篇文章給出了環(huán)面上以內(nèi)面?zhèn)€數(shù),根面次和非根節(jié)點(diǎn)個(gè)數(shù)為參數(shù)的一般有根地圖的計(jì)數(shù)方程,導(dǎo)出了以內(nèi)面?zhèn)€數(shù)和非根節(jié)點(diǎn)個(gè)數(shù)為參數(shù)的這類地圖的計(jì)數(shù)方程的精確解.作為推論,推出了以邊數(shù)為參數(shù)的這類地圖的個(gè)數(shù),其近似解在文獻(xiàn)[2]中已討論
abstract : this paper provides the functional equation of general rooted maps with the number of inner faces, the rooted face valency and the number of non-rooted vertices as parameters on the torus, and gives an explicit expression of the enumerating function of these maps with the number of inner faces and of non-rooted vertices, then the number of these maps with the size as a parameter whose asymptotic result had been obtained in [ 2 ] is obtained as a corollary 文摘:這篇文章給出了環(huán)面上以內(nèi)面?zhèn)€數(shù),根面次和非根節(jié)點(diǎn)個(gè)數(shù)為參數(shù)的一般有根地圖的計(jì)數(shù)方程,導(dǎo)出了以內(nèi)面?zhèn)€數(shù)和非根節(jié)點(diǎn)個(gè)數(shù)為參數(shù)的這類地圖的計(jì)數(shù)方程的精確解.作為推論,推出了以邊數(shù)為參數(shù)的這類地圖的個(gè)數(shù),其近似解在文獻(xiàn)[2]中已討論
asymptotic: 漸近的; 漸近線的; 浙近的a result: 他工作非常專心以致; 因此由于as a result: (作為結(jié)果,因此)表結(jié)果,用不用逗號(hào)隔開看情況而定; 結(jié)果因此; 結(jié)果,因此,由于; 結(jié)果;其結(jié)果是; 因此,作為結(jié)果; 正因?yàn)橐? 作為結(jié)果,因此(插入語(yǔ))as a result of: 其結(jié)果是; 因此; 因?yàn)橛捎? 由于……原因; 由于;作為…的結(jié)果; 由余; 作為結(jié)果as a result(of): 因此由于; 因此(因?yàn)椋?/ol>in result: 結(jié)果in the result: 后果, 結(jié)果result: n. 1.結(jié)果,效果,效驗(yàn),成效;成績(jī);〔pl.〕【體育】比分。 2.【數(shù)學(xué)】計(jì)算的結(jié)果,答案。 3.〔美國(guó)〕(立法機(jī)構(gòu)等的)決議,決定。 to lead to good results 引出好的結(jié)果。 The result was that .... 結(jié)果是…。 as a result of (作)為…的結(jié)果。 bring about [yield] good results 得到好結(jié)果[好成績(jī)]。 give out the results 發(fā)表成績(jī)。 in the result 結(jié)果。 meet with good results 取得好結(jié)果。 without result 無(wú)效地,毫無(wú)結(jié)果地。 vi. 1.結(jié)果為 (in), 由…而造成[產(chǎn)生] (from)。 2.歸結(jié)為,導(dǎo)致 (in)。 Love results in marriage. 戀愛終歸于結(jié)婚。 Nothing has resulted from my efforts. 我的努力毫無(wú)結(jié)果。 result in (failure) 終于(失敗)。 result for: 是……的結(jié)果result in: 導(dǎo)致產(chǎn)生; 導(dǎo)致,出現(xiàn); 導(dǎo)致,結(jié)果是,發(fā)生; 導(dǎo)致,造成; 發(fā)生,導(dǎo)致; 起,導(dǎo)致;結(jié)果是; 引起,結(jié)果是;導(dǎo)致; 終歸,導(dǎo)致the result of…: 的結(jié)果with the result that: 其結(jié)果是..; 因此result result: 可指一系列asymptotic a roximation: 漸近逼近asymptotic analysis: 漸近分析asymptotic angle: 漸近線傾角asymptotic approximation: 漸近逼近; 漸近性近似; 漸逝逼近asymptotic availability: 漸近可用度; 漸近可用性asymptotic behavior: 漸近特性; 漸近行為; 漸近狀態(tài)asymptotic behaviour: 漸近特性; 漸近狀態(tài)asymptotic bias: 漸近偏倚asymptotic bound: 漸近界; 漸近限asymptotic branch: 漸近支asymptotic certainty: 漸近必然性asymptotic characteristic: 漸近特性